
DLCVM

Generalized, Unboundedly Scalable Computation on Bitcoin

Allen Farrington

allen@axiombtc.capital

March 2024

Abstract: DLCVM is a computing paradigm to generalize the domain of computable functions the output

of which can determine the transfer of Bitcoin, and to align the computational cost with the deflationary

trend of Moore’s Law rather than the inflationary trend of competition for block space. This effectively

extends the expressivity of Bitcoin Script yet requires no changes to the network’s consensus rules.

The proposal works as follows: for any computable function with maximum n possible outputs, we construct

a Discreet Log Contract (“DLC”) to be entered into as a Bitcoin transaction with n possible spend paths.

Separately, we arrange for an oracle to attest to the result of this computation. By this paradigm, Bitcoin

transactions can be constructed to depend on the outcome of any arbitrary computation without requiring

that this computation be performed by the network. The only constraint is on a finite and predetermined

number of potential outputs, but not on runtime; the computation can run unboundedly in computational

resources with no correlated onchain footprint, so long as the offchain physical resources are willingly

provided by the parties involved, ideally in a permissionless and decentralized manner.

We posit further that, i) DLCVM generalizes even the concept of a decentralized VM, given any VM can be

used to perform the computations. DLCVM may, therefore, be thought of as not only a virtual machine, but

also as a virtual virtual machine; and, ii) DLCVM spend paths can be constructed as DLCVMs and “chained”

together, enabling a generalization of state channels we call a “virtual network.” Given DLCVM enables any

computation, by any computer, real or virtual, to determine the outputs to a Bitcoin transaction (the most

robust and valuable decentralized asset there is) and to chain such computers together in a virtual network

of virtual machines, it follows that DLCVM is, in a relatively strict theoretical sense, the most powerful

virtualization scheme that could possibly exist.

1. What Is A Computer?

The Oxford English Dictionary defines a “computer” as,

“A device for performing calculations automatically; originally and chiefly: an electronic device which is

capable of receiving, storing, manipulating, and outputting data in accordance with a predetermined program

or sequence of instructions.”

While helpful for general comprehension, for our purposes this immediately raises questions such as, what kind

of device? what kind of calculations? what kind of data? and, what is meant by “manipulating” and
“automatically”? Turing Machines, Turing Completeness, and Computable Functions, or their equivalent

characterizations in terms of λ-calculus or μ-recursion, are typically used to explicate what kind of

computations. Informally, they mean something like the minimum mathematical tooling needed to compute

anything computable, provided with access to an unbounded memory of past states of computation, up to

isomorphism. The concept of an algorithm both formalizes manipulation and captures a specific and purposeful

instantiation of such manipulations that may in turn comprise part(s) of a program. Building on earlier work of

Markov (1954) and Kleene (1967), Knuth (1973) characterizes an algorithm by the features of: finiteness,
definiteness, input, output, and effectiveness. Respectively, these informally capture that: an algorithm must

terminate after finitely many steps; every step in its execution must be precisely and unambiguously defined;

it has zero or more inputs and outputs; and it must be possible in principle to carry out the operations manually.

mailto:allen@axiombtc.capital

In answering, what kind of device, and what kind of data – and mindful of the paradigm shift we will discuss

momentarily – we are forced to reckon with the concept of a virtual machine (“VM”). Originally introduced

by Popek and Goldberg (1974), the rough idea is to conceptually separate an operating system defined purely

in terms of software (the algorithm) from the hardware (the device) on which it is intended to be executed, so

as both to run multiple operating systems on the same hardware and to transplant the same operating system to

different hardware.

2. Turing Completeness, Statefulness, and Virtual Machines

The publication of the Ethereum white paper (Buterin, 2014) and subsequent launch of the Ethereum network

proved a milestone for the range of answers to the titular question of the preceding section, what is a computer?

as well as the more specific question, what is a VM? Bitcoin had launched several years earlier and is alluded

to where relevant by Buterin, but Bitcoin’s novel programming language (“Script”) used to propose and

authenticate valid state transitions was deliberately constructed to be little more than a zero-order predicate

verifier, to be minimally stateful, to have minimally expressive smart contracting capability (Szabo, 1994), not
to be Turing Complete, and to have no VM of which to speak.

The Ethereum Virtual Machine (“EVM”) on the other hand has provided rich material for novel interpretations

and understandings of the fundamental nature of computation. The EVM exists on distributed physical devices

of some subset of network participants. And yet, unlike what we might call “classical” transposable VMs, the

computations executed are only capable of being understood as the operations of a single entity forged by

synchronized adherence to consensus rules mutually enforced by multilateral incentives.

This is all well and good, but there are some valid critiques we can make of Ethereum. While in theory both

the language of the EVM is Turing Complete and its statefulness can perhaps be described as “rich” (Buterin,

2017), in practice neither does the EVM operate as a Turing Machine nor can the states to which its programs

have access scale unboundedly (Miller, 2016). While clearly no physical computer can successfully compute

an infinite loop either (in the sense of definitely executing an algorithm and effectively producing an output, per

Knuth) or store unbounded data in pursuit of executing even a finite algorithm, regular computers can

continuously store and compute for as long as resources are provided and until such an algorithm is exogenously

terminated. Ethereum, on the other hand, must provide an endogenous termination procedure lest the network

immediately succumb to a DOS attack, which it does in the form of “gas” (op. cit. Buterin, 2014).

Given computation is an economic good – and permissionless, distributed computation presumably an

extremely valuable good – we would ideally like continued capital accumulation, and technological innovation

in general, to trigger compounding deflation. However, it is vital for ongoing consensus formation for the gas

token to at least sustain speculative value with relative predictability, if not to appreciate. There seems to be a

conflation between a fungible-seeming capital good and money. Menger (1892) canonically defines money as

“the most saleable good,” and while relatively scarce digital bearer credits for a consensus-entangled VM are

surely valuable, it is unclear if or why they would ever be saleable.

And so, although practically necessary to ensure finiteness, definiteness and automaticity, the monetary role

played by these credits in creating a marketplace forces modes of socioeconomic and technical consensus which

cause the ideal of a VM to run into a number of difficulties. The state transition functions and their fields

(Knuth’s inputs, outputs, and effectiveness) have to adhere to this consensus. Updating the consensus

mechanism is intrinsically at odds with the ideal of distribution of computation and its definiteness, although

the Ethereum Foundation has historically been effective at managing this process.

Hence, even though we start with permissionless, distributed computation, the need to bend the range of

calculation and data to that which enables the definiteness and automaticity of consensus formation required

for Turing Complete expressivity and rich statefulness arguably pares back our ability to physically manifest a

“real” VM within the confines of the distributed ledger to which its output is anchored. As Maxwell (2016) and

O’Connor (2017) observe, we may as well have used a total functional programming language (Turner, 2004)

given the complexity class of the problem space of verifying execution of total functions is anyways more

limited than that required for Turing Complete expressivity. As introduced above, we term this situation

“consensus entanglement,” and suggest it appears intractable under prior paradigms of cryptoeconomic design.

Returning to Bitcoin may regain a suitably saleable money, but as is well understood, Script can only verify

zero-order predicates, has minimal state, and has no real VM. That said, recent development efforts in Bitcoin

have taken steps to address some of these points. For example, BitVM (Linus, 2023) has opened the door to

the verification of decidable programs in Script. An example recently made popular on social media involves

Chess being encoded in BitVM, which we know is decidable by Zermelo’s Theorem (Zermelo, 1913).

However, programs which loop unboundedly seem still to be intractable without contentious network upgrades.

Without OP_CAT, for example, it seems unlikely Script could handle a simulation of The Sims, given, unlike

Chess, The Sims is known to allow for infinite loops in some cases of ethically questionable play.

3. Scaling by Oraclizing Offchain Computation

The quantum of capital allocated to the Ethereum ecosystem surely suggests there is a market for, and some
merit in, a distributed smart contracting VM. Hence, to avoid the issues identified above, chief amongst them

VM-limiting consensus entanglement, we desire a means for onchain verification of functions operating on

Bitcoin that are in principle unknowably decidable and the execution of which we can shift to a more

economically sound and coherent computing domain. In the Discreet Log Contracts (“DLCs”) white paper,

Dryja (2018) succinctly addresses many of the concerns covered above, writing:

“Two of the biggest hurdles to their implementation and adoption have been scalability of the smart contracts,
and the difficulty in getting data external to the currency system into the smart contract.”

Dryja goes onto describe a contract and signature scheme whereby an oracle attests to some real-world

outcome; a range of partially signed transactions between counterparties Alice and Bob have already been

created such that only the transaction corresponding to this outcome is ever “fully” signed, is ever therefore

valid, and can be successfully broadcast to close out the “contract.” The example in the white paper – and in

some sense the canonical use case to date – is that of a floating exchange rate relative to Bitcoin (the monetary

asset) such that the counterparties are effectively creating an onchain futures contract that is automatically

executed when provided with the oracle’s independent attestation.

We propose utilizing oracle attestations in DLCs with a different goal in mind: as the basis for a VM in Bitcoin.

Consider that any computable function has a theoretical maximum of m possible effective outputs (Radó, 1962)

and therefore a real maximum n, such that n ≤ m. Hence, we first construct a DLC with n possible spend paths

and arrange for an oracle to attest to the result of this computation. The model of blockchain-anchored,

generalized computation that emerges we term the “DLCVM,” and the individual contracts from which

DLCVMs are built, “computationally unbounded contracts” or CUCs. How the oracle for a given CUC is to be

implemented is left to the reader as it is outside the scope of this paper.

DLCVM provides several benefits over the prevailing paradigm of onchain computation. Smart contracts on

Bitcoin can be constructed in this manner to depend on the outcome of any arbitrary computation that is entirely

outside the constraints of network consensus. All we require is that the offchain resources are provided willingly

by the parties involved. The devices and the data can be anything on which the counterparties agree. An

unbounded range of independently parameterized Knuthian algorithmic design can be brought to bear, covering

any degree (or not) of Turing Complete expressivity, computational complexity, decidability, statefulness, and

the like, given the only bottleneck rests with verification that can be achieved in Bitcoin today, without a

consensus upgrade. Freed from this constraint, computation becomes truly decentralized and permissionless.

In contrast to more restrained “layer separation” (Buterin, 2019) we propose to have bypassed consensus

entanglement with a novel cryptoeconomic design heuristic we instead term “radical separation.” This

paradigm also aligns the cost of computation as an economic good with deflationary trends in capital formation:

most notably, Moore’s Law, rather than the steady appreciation to be expected of well-functioning money.

Properly understood, we posit further that DLCVM not only generalizes the space of algorithms that can

determine Bitcoin transactions, but that, in fact, DLCVM generalizes the concept of a distributed VM itself.

The fact any device and data can be used to execute the algorithms means, by extension, that any VM can as

well. We posit DLCVM can be understood not only as a virtual machine but also as a virtual virtual machine,

which we term “metavirtualization.”

4. Scaling by Recursive Virtualization

Supposing we construct every CUC spend path so as to up its own CUC (of which the same is true, and so on,

i-many times), including itself, we may get several benefits: i) this implies offchain state transitions such that

the onchain settlement can be pushed out to at least i-many state transitions later, hence i can be chosen to be

arbitrarily high so as to effectively indefinitely defer settlement, both as a technical nuisance and an economic

cost, ii) a given state transition to a new child CUC could be contingent on verifiable proof of such a transition

in a separate DLCVM (and vice versa) such that atomic state swaps can be enforced, creating an analogue of a

state channel network we term a “virtual network,” and; iii) the maximum realistically desirable states of either

one DLCVM or a network of such DLCVMs can be radically reduced by instead considering every plausible

route through states, and building the spend paths to enable cycling around the network state space without

ever closing onchain.

We believe this appropriately generalizes the concept of a “state channel” to a “virtual channel” given not only

the state but all elements of computation – the state transition function itself, including its own data, its own

future computational range, and, crucially, its own VM – are faithfully transferred across time and across

execution counterparties without hitting the chain. This naturally gives rise to constructs we term “virtual state

flow” and “metavirtual liquidity” and is arguably the truest manifestation of a virtual virtual machine:

virtualized not only across computational paradigms but also across itself.

5. Applications and Further Research

We suggest, as a modest starting point, that any smart contract scheme in a cryptoeconomic system other than

Bitcoin can now be replicated at a fraction of the cost and can operate on a more robust digital asset. Beyond

this, there may be even more exciting applications in store. It would appear that a range of highly technical and

controversial Bitcoin scaling proposals can be implemented today, from zk-STARKs to Simplicity to Two-

Way Pegged Sidechains (or even three- or four-way, for the sake of argument). The risk and complexity of the

network upgrades thought to be necessary to enable these, and others, can be radically separated from Bitcoin’s

consensus layer under the DLCVM paradigm. We can imagine further economic and technical benefits to be

realized by embedding the CUCs constituting a DLCVM in a Lightning Channel (Le Guilly, 2022) rather than

onchain. Equally, the DLC adaptor signature authorizing the correct execution could be reimagined as a FROST

signature (Komlo & Goldberg, 2020), or even as the output of, or cryptographically contingent on, some other

multi-party computational process. This process could potentially store and/or execute on a separate VM

entirely (i.e. EVM, Cairo, Clarity, JVM, etc.). Finally, we anticipate OP_CTV would improve the efficiency of

this proposal, but we haven’t worked out the details.

Beyond these and other practical applications, we imagine avenues for further theoretical research into

computability theory. We believe most of the results and argumentation herein can be explicated in terms of

Post’s Theorem, in particular due to our demonstrated links between recursive enumerability, oracles, and

Turing Completeness. Consider also that Gödel’s Second Incompleteness Theorem fundamentally limits the

space of the provable decidability of the first-order predicate schemes within which we may want to compute.

We proposed a means to engineer these offchain in order to move our execution domain away from simpler

zero-order predicates, even though the constraints of this execution paradigm nonetheless impose

computational cost. Hence, we leave open the prospect that robust second-order languages (and higher) may

extend the computational power of DLCVM. Utilizing radical separation to break free of consensus

entanglement may lay the groundwork for even more powerful programming paradigms to one day be brought

to Bitcoin.

References

Buterin, Vitalik, 2014, Ethereum: A Next-Generation Smart Contract and Decentralized Application

Platform, available: https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-

_Buterin_2014.pdf

Buterin, Vitalik, 2017, Reddit comment, available:

https://www.reddit.com/r/btc/comments/6ldssd/comment/djt6opz/

Buterin, Vitalik, 2019, Base Layers and Functional Escape Velocity, available:

https://vitalik.eth.limo/general/2019/12/26/mvb.html

Dryja, Thaddeus, 2018, Discreet Log Contracts, available:

https://static1.squarespace.com/static/59aae5e9a803bb10bedeb03e/t/5a85cf21e4966bb735a9f757/15187

18768309/discrete+log+contracts.pdf

Knuth, Donald Ervin, 1973, The Art of Computer Programming, Second Edition, Reading, MA:

Addison-Wesley

Komlo, Chelsea & Goldberg, Ian, 2020, FROST: Flexible Round-Optimized Schnorr Threshold
Signatures, available: https://eprint.iacr.org/2020/852.pdf

Le Guilly, Thibaud, 2022, DLCs on Lightning, available: https://medium.com/crypto-garage/dlc-on-

lightning-cb5d191f6e64

Linus, Robin, 2023, BitVM: Compute Anything on Bitcoin, available: https://bitvm.org/bitvm.pdf

Markov, Andrey, 1954, Theory of Algorithms, Tr. Mat. Inst. Steklov 42, pp. 1–14. trans. by Edwin

Hewitt in American Mathematical Society Translations, Series 2, Vol. 15 (1960)

Maxwell, Gregory, 2016, Turing Completeness and State for Smart Contract, BitcoinTalk post,

available: https://bitcointalk.org/index.php?topic=1427885.msg14601127#msg14601127

Menger, Carl, 1892, On the Origins of Money, Economic Journal 2 (1892): 239-55; translation by C.A.

Foley, available: https://cdn.mises.org/On%20the%20Origins%20of%20Money_5.pdf

Miller, Andrew, 2016, Ethereum Isn’t Turing Complete, and it Doesn’t Matter Anyway, available:

https://www.youtube.com/watch?v=cGFOKTm_8zk

O’Connor, Russell, 2017, Post’s Theorem and Blockchain Languages, available:

https://www.youtube.com/watch?v=TGE6jrVmt_I

Popek, Gerald J. & Goldberg, Robert P., 1974, Formal Requirement for Virtualizable Third Generations

Architectures, available: https://www.cs.cornell.edu/courses/cs6411/2018sp/papers/popek-goldberg.pdf

Radó, Tibor, 1962, On Non-Computable Functions, Bell System Technical Journal, 41 (3): 877–

884, doi:10.1002/j.1538-7305.1962.tb00480.x

Szabo, Nick, 1994, Smart Contracts, available: https://nakamotoinstitute.org/smart-contracts/

Turner, D.A., 2004, Total Functional Programming, Journal of Universal Computer Science, 10(7):

751-768, doi:10.3217/jucs-010-07-0751

Zermelo, Ernst, 1913, On an Application of Set Theory to the Theory of the Game of Chess

https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://www.reddit.com/r/btc/comments/6ldssd/comment/djt6opz/
https://vitalik.eth.limo/general/2019/12/26/mvb.html
https://static1.squarespace.com/static/59aae5e9a803bb10bedeb03e/t/5a85cf21e4966bb735a9f757/1518718768309/discrete+log+contracts.pdf
https://static1.squarespace.com/static/59aae5e9a803bb10bedeb03e/t/5a85cf21e4966bb735a9f757/1518718768309/discrete+log+contracts.pdf
https://eprint.iacr.org/2020/852.pdf
https://medium.com/crypto-garage/dlc-on-lightning-cb5d191f6e64
https://medium.com/crypto-garage/dlc-on-lightning-cb5d191f6e64
https://bitvm.org/bitvm.pdf
https://bitcointalk.org/index.php?topic=1427885.msg14601127#msg14601127
https://cdn.mises.org/On%20the%20Origins%20of%20Money_5.pdf
https://www.youtube.com/watch?v=cGFOKTm_8zk
https://www.youtube.com/watch?v=TGE6jrVmt_I
https://www.cs.cornell.edu/courses/cs6411/2018sp/papers/popek-goldberg.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1002%2Fj.1538-7305.1962.tb00480.x
https://nakamotoinstitute.org/smart-contracts/

